A simple and systematic approach to assigning Denavit-Hartenberg parameters.

Peter I. Corke, Senior Member, IEEE

Abstract

This paper presents a simple and intuitive approach to determining the kinematic parameters of a serial-link robot in Denavit and Hartenberg notation. Once a manipulator’s kinematics is parameterized in this form a large body of standard algorithms and code implementations for kinematics, dynamics, motion planning and simulation are available. The proposed method has two parts. The first is the “walk through”, a simple procedure that creates a string of elementary translations and rotations, from the user defined base coordinate to the end-effector. The second step is an algebraic procedure to manipulate this string into a form that can be factorized as link transforms which can be represented in standard or modified Denavit and Hartenberg notation. The method allows for an arbitrary base and end-effector coordinate system as well as an arbitrary zero joint angle pose. The algebraic procedure is amenable to computer algebra manipulation.

Index Terms

Kinematics, Denavit-Hartenberg notation

P. Corke is with the CSIRO ICT Centre, Brisbane, Australia.
A simple and systematic approach to assigning Denavit-Hartenberg parameters.

I. INTRODUCTION

The Denavit and Hartenberg notation for describing a serial-link mechanism geometry is a fundamental tool of the roboticist. Given such a description of a manipulator we can make use of established algorithmic techniques to find kinematic solutions, Jacobians, dynamics, motion planning and simulation, for example [1], [2].

Most modern industrial robots have a kinematic configuration similar to a Puma robot and the textbook Denavit-Hartenberg parameters, with some adjustments for the particular robot, will suffice. However determining the Denavit and Hartenberg parameters and link coordinate frames for a completely new mechanism is harder than it should be — even for an experienced roboticist. Complications include spherical joints, base and tool transforms, and arbitrary world coordinate frames. The kinematic zero-angle configuration of the robot is often different to the joint controller’s zero-angle configuration, and requires that joint angle offsets be introduced.

The fundamentals of serial-link robot kinematics and the Denavit-Hartenberg [3] notation are well covered in standard texts [4], [5]. Each link is represented by two parameters: the link length, \(a_i \), and link twist, \(\alpha_i \), which define the relative location of the two attached joint axes in space. The link parameters for the first and last links are meaningless, and are arbitrarily chosen to be 0. Joints are also described by two parameters: the link offset, \(d_i \), which is the distance from one link to the next along the axis of the joint, and the joint angle, \(\theta_i \), which is the rotation of one link with respect to the next about the joint axis.

For a revolute axis \(\theta_i \) is the joint variable and \(d_i \) is constant, while for a prismatic joint \(d_i \) is variable, and \(\theta_i \) is constant. In many of the formulations that follow we use generalized coordinates, \(q_i \), where

\[
q_i = \begin{cases}
\theta_i & \text{for a revolute joint} \\
\alpha_i & \text{for a prismatic joint}
\end{cases}
\]

The Denavit-Hartenberg (DH) representation results in a link transform matrix that transforms link coordinate frame \(i \) to frame \(i-1 \) of the form

\[
i-1 A_i(\theta_i, d_i, a_i, \alpha_i) = R_z(\theta_i)T_z(d_i)T_x(a_i)R_x(\alpha_i)
\]

(1)

where \(R_k \) denotes rotation about axis \(k \) and \(T_k \) denotes translation along axis \(k \). The notation is elaborated in Section III.

For an \(n \)-link manipulator we can express the overall robot transform in terms of the individual link transforms

\[
0T_n = 0A_1^1 A_2 \cdots A_{n-1} A_n
\]

(2)

which results in

\[
R_z(\theta_1)T_z(d_1)T_z(a_1)R_z(\theta_2)T_z(d_2)T_z(a_2)R_z(\alpha_2) \cdots R_z(\theta_n)T_z(d_n)T_z(a_n)R_z(\alpha_n)
\]

(3)

a string of elementary transformations.

The classical method of assigning Denavit-Hartenberg parameters is to systematically assign a coordinate frame to each link, but there are significant constraints on each frame, and also the coordinate system of the base and the end-effector. An interesting complication with the Denavit-Hartenberg notation is the zero-angle configuration, that is, the pose when all joint angles are zero. For the Puma robot this is a non-obvious ‘L-shaped’ pose with the upper arm horizontal and the lower arm vertically upward. A robot control designer may choose the zero-angle configuration to be something more obvious such as that shown in Figure 2. The kinematic zero-angle configuration of the robot is often different to the joint controller’s zero-angle configuration, and requires that joint angle offsets be determined.

This paper presents a new method of generating Denavit-Hartenberg parameters. It is a two step method. The first step involves a very simple and intuitive approach to describing the manipulator kinematics as a series of elementary translations and rotations. Unlike the conventional approach there are no constraints on the axes about which these rotations or translations can occur. The second step is the application of a set of algebraic rules that can be applied to this sequence to convert it into the Denavit-Hartenberg form. Joint angle offsets, if required by the chosen zero-angle configuration chosen are generated automatically, as are base and tool transformations.

In 1986 Craig [6] introduced the modified Denavit-Hartenberg notation where the link coordinate frame is attached to the proximal, rather than distal, end of each link. According to Craig

\[
i-1 \tilde{A}_i = R_z(\alpha_{i-1})T_x(a_{i-1})R_z(\theta_i)T_z(d_i)
\]

(4)

which Craig denotes as \(i-1 \tilde{A} \) and has the same terms as (2) but in a different order. It is important to note that the algorithmic implementation for kinematics, Jacobians and dynamics depends on the convention used. The method proposed in this paper is also able to generate modified Denavit-Hartenberg parameters.

The remainder of the paper is organized as follows. Section II describes the first stage or “walk through process” for two common mechanisms; the 2-axis Furata pendulum [7] and the well known Puma 560 robot [5]. Section III describes, for these two mechanisms, how to manipulate the...
We will also use the shorthand notation to represent rotations of $\pi/2$ about a particular axis. It is not important at this stage how T_i and R_i are represented, but if it assists in understanding they could be considered as 4×4 homogeneous transformation matrices [5].

With these few preliminaries out of the way we can tackle our first example. Consider the simple mechanism given in Figure 1, which is known as a Furata pendulum [7]. It comprises a 1-DOF pendulum hanging from the end of a rotating arm. While perhaps not typically considered as a manipulator, if we can describe it using Denavit-Hartenberg notation then we can use many existing tools [1], [8], [9] to generate its forward and inverse kinematic solutions as well as its dynamic equations of motion. Further we require that the pose shown in Figure 1, which is known as a Furata pendulum [7], is the zero angle pose of the mechanism.

Fig. 1. Two axis, Furata, pendulum example shown in its zero-angle pose.

Let us imagine a standard right-handed coordinate frame at the base of the mechanism. Next we imagine this coordinate frame moving through the mechanism by a sequence of elementary rotations and translations. We move the frame up to Θ_1, by translating L_0 along Z, rotating by q_1 about z, then translating across to Θ_2 by L_1 along X, rotating by q_2 about X, then translating along Z by $-L_2$ to reach Θ_3, where we rotate by π about the Y axis so as to have the Z-axis pointing outward. It is almost trivially easy to write down

$$T_z(L_0)R_z(q_1)T_x(L_1)R_y(q_2)T_z(-L_2)R_y(\pi) \tag{5}$$

For the more complex 6-DOF Puma robot of Figure 2 we follow a similar process. We move the base frame up to Θ_1, translating by L_1 along Z, rotate by q_1 about Z, then translate by L_2 along Y to reach Θ_2. We rotate by q_2 about Y, then translate by L_3 along Z to reach Θ_3. A small translation L_6 along X, then a rotation of q_3 about X, and a translation of L_4 along X ($L_4 < 0$) brings us to Θ_4 and so on. As we go we have written down

$$T_z(L_1)R_z(q_1)R_y(q_2)T_y(L_2)T_z(L_3)R_y(q_3)T_z(L_6)T_y(L_4) \cdots T_z(L_5)R_z(q_4)R_y(q_5)R_z(q_6)T_z(L_7) \tag{6}$$

where, again, the joint angles q_i are zero in the pose shown.

Fig. 2. Puma robot example. Side elevation showing critical dimensions. Note that L_6 is a translation in the x-direction between the q_2 and q_3 axes. The robot is shown in its zero-angle pose.

II. STEP 1: THE MANIPULATOR WALK THROUGH

We will first introduce the notation to describe the elementary translations and rotations with which we will describe the manipulator. A pure translation of r along the current X, Y or Z axis is

$$T_i(r), i \in \{x, y, z\}$$

A pure rotation of θ about the current X, Y or Z axis is

$$R_i(\theta), i \in \{x, y, z\}.$$

We will also use the shorthand notation

$$R_i \equiv R_i(\frac{\pi}{2}), i \in \{x, y, z\}.$$

to represent rotations of $\pi/2$ about a particular axis. It is not important at this stage how T_i and R_i are represented, but if it assists in understanding they could be considered as 4×4 homogeneous transformation matrices [5].

With these few preliminaries out of the way we can tackle our first example. Consider the simple mechanism given in Figure 1, which is known as a Furata pendulum [7]. It comprises a 1-DOF pendulum hanging from the end of a rotating arm. While perhaps not typically considered as a robot, if we can describe it using Denavit-Hartenberg notation then we can use many existing tools [1], [8], [9] to generate its forward and inverse kinematic solutions as well as its dynamic equations of motion. Further we require that the pose shown in Figure 1 is the zero angle pose of the mechanism.
III. Step 2: The Algebra

In this section we will define some algebraic rules that allow us to systematically transform the strings of elementary rotations and translations into Denavit-Hartenberg notation. Firstly we need to define some additional notation and then some transformation rules. It is useful to define the relationships

\[T^*_i(r) \equiv T_i(-r) \]
\[R^*_i(\theta) \equiv R_i(-\theta) \]

Commutivity applies to translation

\[T_i(r_1)T_j(r_2) = T_j(r_2)T_i(r_1), \quad i,j \in \{x,y,z\} \]

but not rotation

\[R_i(\theta_1)R_j(\theta_2) \neq R_j(\theta_2)R_i(\theta_1), \quad i,j \in \{x,y,z\}, \quad i \neq j \]

Rotations obey the cyclic rules

\[R_xR_yR_x \equiv R_x(\theta) \]
\[R_yR_zR_y \equiv R_y(\theta) \]
\[R_zR_xR_z \equiv R_z(\theta) \]

and anti-cyclic rotation rules

\[R'_xR_yR_x \equiv R_x(\theta) \]
\[R'_yR_zR_y \equiv R_y(\theta) \]

Similar rotations and translations can be compounded

\[R_i(\theta_1)R_j(\theta_2) \equiv R_i(\theta_1 + \theta_2), \quad i,j \in \{x,y,z\} \]
\[T_i(r_1)T_j(r_2) \equiv T_i(r_1 + r_2), \quad i,j \in \{x,y,z\} \]

For mixed rotations and translation we can write

\[R_i(\theta)T_j(r) \equiv T_j(r)R_i(\theta), \quad i \in \{x,y,z\} \]
\[R_i(\theta)T_j(r) \equiv s(k)T_k(r)R_i, \quad i,j \in \{x,y,z\}, \quad i \neq j \]

where \(k = \{x,y,z\} \setminus \{i,j\} \), \(s(k) \) represents an ordered set and the backlash represents the set difference operator, and

\[s(k) = \begin{cases}
 +1 & i > j \\
 -1 & i < j
\end{cases} \]

such that \(y > x \) and \(x > z \). For terms that involve a joint variable we can use

\[R_x(q) \equiv R_yR_x(q)R'_y \]
\[R_y(q) \equiv R'_xR_y(q)R_x \]
\[T_x(q) \equiv R_xT_x(q)R'_y \]
\[T_y(q) \equiv R'_xT_x(q)R_x \]

The following substitutions for fixed terms

\[R_y \equiv R_zR_xR'_y \]
\[T_y \equiv R_zT_xR'_y \]

will be needed later. No proofs are offered for these rules but they can be readily shown by considering \(R_i \) and \(T_i \) as \(4 \times 4 \) homogeneous transformations.

A. Transformation rules

We return now to the strings of elementary rotations and translations from Section II. Consider first the Furata pendulum given in (5). Our first step is to push constant (not joint variable) transformations as far to the right as we can using pair-wise commutative swaps

\[\begin{aligned}
 R_z(q_1)T_z(L_0)R_y(q_2)T_y(L_2)R_x(q_3)T_x(L_1)R_y(q_4)R_y(\pi) \\
 = R_z(q_1)T_z(L_1)R_y(q_2)T_y(L_0)R_x(q_3)T_x(L_2)R_y(q_4)R_y(\pi)
\end{aligned} \]

The double box represents an initial position or value for a term, and the oval box in the following line represents its final position or value. Here \(T_z(L_0) \) has crossed \(R_z(q_1) \) but cannot cross \(R_x(q_3) \). Similarly \(T_z(L_1) \) has crossed \(R_z(q_2) \).

The Denavit-Hartenberg conventions require that the axis of a joint is about or along the Z-axis of the coordinate frame. To achieve this we must substitute for the term \(R_x(q_2) \) using

\[\begin{aligned}
 R_z(q_1)T_z(L_0)R_y(q_2)T_y(L_2)R_x(q_3)T_x(L_1)R_y(q_4)R_y(\pi) \\
 = R_z(q_1)T_z(L_0)R_y(q_2)T_y(L_2)R_x(q_3)T_x(L_1)R_y(q_4)R_y(\pi)
\end{aligned} \]

which is starting to show some of the structure that we want, but we have introduced two undesirable \(R_y \) terms. The vertical strut is a notational convenience that partitions terms into groups associated with links. Dealing with the first link, which is the first three terms of (32), we have an \(R_y \) term which is not allowed so we will substitute it using

\[\begin{aligned}
 R_z(q_1)T_z(L_0)R_y(q_2)T_y(L_0)R_x(q_3)T_x(L_1)R_y(q_4)R_y(\pi) \\
 = R_z(q_1)T_z(L_0)R_y(q_2)T_y(L_0)R_x(q_3)T_x(L_1)R_y(q_4)R_y(\pi)
\end{aligned} \]

\[\begin{aligned}
 R_z(q_1)T_z(L_0)R_x(q_2)T_x(L_2)R_y(q_3)T_y(L_1)R_y(q_4)R_y(\pi) \\
 = R_z(q_1)T_z(L_0)R_x(q_2)T_x(L_2)R_y(q_3)T_y(L_1)R_y(q_4)R_y(\pi)
\end{aligned} \]

\[\begin{aligned}
 R_z(q_1)T_z(L_0)R_y(q_2)T_y(L_2)R_x(q_3)T_x(L_1)R_y(q_4)R_y(\pi) \\
 = R_z(q_1)T_z(L_0)R_y(q_2)T_y(L_2)R_x(q_3)T_x(L_1)R_y(q_4)R_y(\pi)
\end{aligned} \]

\[\begin{aligned}
 R_z(q_1)T_z(L_0)R_x(q_2)T_x(L_2)R_y(q_3)T_y(L_1)R_y(q_4)R_y(\pi) \\
 = R_z(q_1)T_z(L_0)R_x(q_2)T_x(L_2)R_y(q_3)T_y(L_1)R_y(q_4)R_y(\pi)
\end{aligned} \]

Gathering adjacent \(R_z \) terms in (38) we have automatically introduced joint angle offsets, that is the joint variables have an associated offset that is required in order for the mechanism to have the zero angle pose shown in Figure 1. The first link, that is the first three terms of (38), now has exactly the form of (1) and can be written as a Denavit-Hartenberg link transform.
as per (1).

\[
\begin{align*}
\begin{bmatrix} R_z(q_1 + \frac{\pi}{2})T_z(L_0)R_x \end{bmatrix} & R_z(q_2 - \frac{\pi}{2})R'_y T_z(L_2)T_x(L_1)R_x R_y(\pi) \\
\begin{bmatrix} A(q_1 + \frac{\pi}{2}, L_0, 0, 0) \end{bmatrix} & R_z(q_2 - \frac{\pi}{2})R'_y T_z(L_2)T_x(L_1)R_x R_y(\pi)
\end{align*}
\]

(39)

(40)

The remaining terms must form the second link and possibly a trailing tool transform, but it contains a non-allowed \(R'_y \) term which we will first push as far to the right of the expression as we can

\[
\begin{align*}
&\begin{bmatrix} R_z(q_1 + \frac{\pi}{2}, L_0, 0, 0) \end{bmatrix} R_z(q_2 - \frac{\pi}{2}) \begin{bmatrix} R'_y T_z(L_2) \end{bmatrix} T_x(L_1)R_x R_y(\pi) \\
&\begin{bmatrix} A(q_1 + \frac{\pi}{2}, L_0, 0, 0) \end{bmatrix} R_z(q_2 - \frac{\pi}{2}) T_x(-L_2) \begin{bmatrix} R'_y T_z(L_1) \end{bmatrix} R_x R_y(\pi)
\end{align*}
\]

(41)

(42)

(43)

(44)

As it moved to the right it has flipped the orientation of the translation terms and also swapped their order but this is not a problem since they are commutative. Now we substitute \(R'_y = R'_y R'_x R_x \) using (24)

\[
\begin{align*}
&\begin{bmatrix} R_z(q_1 + \frac{\pi}{2}, L_0, 0, 0) \end{bmatrix} R_z(q_2 - \frac{\pi}{2}) \begin{bmatrix} T_x(-L_2)T_x(L_1) \end{bmatrix} \begin{bmatrix} R'_y T_z(L_2) \end{bmatrix} T_x(L_1)R_x R_y(\pi) \\
&\begin{bmatrix} A(q_1 + \frac{\pi}{2}, L_0, 0, 0) \end{bmatrix} R_z(q_2 - \frac{\pi}{2}) T_x(-L_2) \begin{bmatrix} R'_y T_z(L_1) \end{bmatrix} T_x(L_1)R_x R_y(\pi)
\end{align*}
\]

(45)

(46)

(47)

(48)

which is now in the desired form

\[
\begin{align*}
&\begin{bmatrix} R_z(q_1 + \frac{\pi}{2}, L_0, 0, 0) \end{bmatrix} \begin{bmatrix} R_z(q_2 - \frac{\pi}{2})T_x(-L_2)T_x(L_1) \end{bmatrix} \begin{bmatrix} R'_y T_z(L_2) \end{bmatrix} T_x(L_1)R_x R_y(\pi) \\
&\begin{bmatrix} A(q_1 + \frac{\pi}{2}, L_0, 0, 0) \end{bmatrix} R_z(q_2 - \frac{\pi}{2}) T_x(-L_2) \begin{bmatrix} R'_y T_z(L_1) \end{bmatrix} T_x(L_1)R_x R_y(\pi)
\end{align*}
\]

(49)

(50)

(51)

where \(\tilde{q} \) are the joint angles in the Denavit-Hartenberg model and the offsets give the zero angle pose as shown in the original diagram

\[
\begin{align*}
\tilde{q}_1 &= q_1 + \frac{\pi}{2} \\
\tilde{q}_2 &= q_2 - \frac{\pi}{2}
\end{align*}
\]

(52)

(53)

A tool transform \(R'_x R_x(\pi) \) has also been isolated at the right-hand side of the equation, the transforms that didn’t factor into Denavit-Hartenberg link terms.

In (34) and (46) we have made different substitutions for \(R_y \). This requires some choice and judgment but a heuristic has been developed.

The Puma robot example is necessarily more complex and will be given in a more compact form in Table I. At line 11 we push the constant \(R_x \) to the right since the terms are out of order. This results in the creation of a \(T_y \) term at line 12 which is not allowed, and this is then substituted in line 15, after which terms cancel or combine. We can see that 4 joints are factorized after just 11 algebraic steps.

B. An algorithm for automatic symbolic manipulation

The approach just given can be mechanized by the following rules:

1) Move all constant (non joint variable) terms as far to the right as they can go without changing any term that they cross. For instance a translation term \(T_i \) can cross \(T_j, j \in \{x, y, z\} \) or \(R_i \). A rotation term \(R_i \) can cross any \(T_i \). If a term meets a term of the same type they should be merged.

2) For each term containing a generalized coordinate make the following substitutions:

\[
\begin{align*}
R_x(q) &:= R_y R_z(q) R'_y \\
R_y(q) &:= R_x R_z(q) R'_y \\
T_x(q) &:= R_y T_z(q) R'_y \\
T_y(q) &:= R'_y T_z(q) R_x
\end{align*}
\]

(54)

(55)

(56)

(57)

3) Combine adjacent rotations or translation about the same axis

4) Combine groups of elementary operations into A matrices for standard or modified Denavit-Hartenberg notation which are respectively:

\[
\begin{align*}
R_z(\theta) T_x(a) T_z(d) R_x(\alpha) &:= A(\theta, a, \alpha) \\
R_x(\alpha) T_z(a) R_y(\theta) T_z(d) &:= A(\theta, a, \alpha)
\end{align*}
\]

(58)

(59)

Swap terms using commutation laws as appropriate.

5) Push \(R'_y \) terms as far to the right within the link group as possible, that is, no further than the next joint variable term. As the term moves rightward it will flip the translation direction of \(T_i \) terms it cross according to (19).

6) Substitute

\[
\begin{align*}
R_y &:= R_x R_z R'_z \\
R'_y &:= R'_x R_z R_x \\
T_x &:= R_z T_z R'_x \\
T_y &:= R'_x T_z R_x
\end{align*}
\]

(60)

(61)

(62)

(63)

The appropriate substitution to employ depends on the adjacent terms, with a stronger preference to conform to an adjacent joint variable term. For example \(R_z(q) R_y \) should use the substitution (60).

7) Repeat steps 3 through 6 until no more transformations occur.

Such rules can be very easily coded in a symbol processing computer language such as Python, Tcl, Maple or Lisp.
IV. Conclusion

This paper has presented a simple approach to determining the kinematic parameters of a serial-link mechanism in either standard or modified Denavit and Hartenberg notation. The method has two parts. The first is the “walk through”, a simple procedure that creates a string of elementary translations and rotations from the user-defined base coordinates to the end-effector. The second step is an algebraic procedure to manipulate this string into a form that can be factorized as link transforms which can be represented in standard or modified Denavit and Hartenberg notation and automatically provides the kinematic joint angle offsets. The algebraic procedure is amenable to computer algebra manipulation using languages with list processing capabilities such as Python, Tcl, Maple or Lisp.

References

TABLE I

SYMBOLIC MANIPULATION FOR 6-DOF PUMA EXAMPLE.