
A computer tool for simulation and analysis:
the Robotics Toolbox for MATLAB

Peter I. Corke
CSIRO Division of Manufacturing Technology

pic@mlb.dmt.csiro.au

Abstract. This paper introduces, in tutorial form, a Robotics Toolboxfor MATLAB that allows
the user to easily create and manipulate datatypes fundamental to robotics such as homogeneous
transformations, quaternions and trajectories. Functions provided for arbitrary serial-link ma-
nipulators include forward and inverse kinematics, and forward and inverse dynamics. The
complete Toolbox and documentation is freely available viaanonymous ftp.

1 Introduction

MATLAB[1] is a powerful environment for linear algebra and graphical presentation that is
available on a very wide range of computer platforms. The core functionality can be extended by
application specific toolboxes. The Robotics Toolbox provides many functions that are required
in robotics and addresses areas such as kinematics, dynamics, and trajectory generation. The
Toolbox is useful for simulation as well as analyzing results from experiments with real robots,
and can be a powerful tool for education.

The Toolbox is based on a very general method of representingthe kinematics and dynamics
of serial-link manipulators by description matrices. These comprise, in the simplest case, the
Denavit and Hartenberg parameters[2] of the robot and can becreated by the user for any serial-
link manipulator. A number of examples are provided for wellknown robots such as the Puma
560 and the Stanford arm. The manipulator description can beelaborated, by augmenting the
matrix, to include link inertial, and motor inertial and frictional parameters. Such matrices
provide a concise means of describing a robot model and may facilitate the sharing of robot
models across the research community. This would allow simulation results to be compared
in a much more meaningful way than is currently done in the literature. The Toolbox also
provides functions for manipulating datatypes such as vectors, homogeneous transformations
and unit-quaternions which are necessary to represent 3-dimensional position and orientation.
The routines are generally written in a straightforward, ortextbook, manner for pedagogical
reasons rather than for maximum computational efficiency.

This paper is written in a tutorial form and does not require detailed knowledge of MAT-
LAB. The examples illustrate both the principal features ofthe Toolbox and some elementary
robotic theory. Section 2 begins by introducing the functions and datatypes used to represent
3-dimensional (3D) position and orientation. Section 3 introduces the general matrix repre-
sentation of an arbitrary serial-link manipulator and covers kinematics; forward and inverse
solutions and the manipulator Jacobians. Section 4 is concerned with the creation of trajecto-
ries in configuration or Cartesian space. Section 5 extends the general matrix representation to

include manipulator rigid-body and motor dynamics, and describes functions for forward and
inverse manipulator dynamics. Details on how to obtain the package are given in Section 6.

2 Representing 3D translation and orientation

In Cartesian coordinates translation may be represented bya position vector,A p, with respect
to the origin of coordinate frameA and wherep ∈ ℜ3. If A is not given the world coordinate
frame is assumed. Many representations of 3D orientation have been proposed[3] but the most
commonly used in robotics are orthonormal rotation matrices and unit-quaternions. The homo-
geneous transformation is a 4×4 matrix which represents translation and orientation and can
be compounded simply by matrix multiplication. Such a matrix representation is well matched
to MATLAB’s powerful capability for matrix manipulation. Homogeneous transformations

T =

[

R p
0 0 0 1

]

(1)

describe the relationships between Cartesian coordinate frames in terms of a Cartesian trans-
lation, p, and orientation. expressed as an orthonormal rotation matrix, R is a 3× 3. A ho-
mogeneous transformation representing a pure translationof 0.5m in the X-direction is created
by

>> T = transl(0.5, 0.0, 0.0)
T =

1.0000 0 0 0.5000
0 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000

and a rotation of 90◦ about the Y-axis by

>> T = roty(pi/2)
T =

0.0000 0 1.0000 0
0 1.0000 0 0

-1.0000 0 0.0000 0
0 0 0 1.0000

Such transforms may be concatenated by multiplication, forinstance,

>> T = transl(0.5, 0.0, 0.0) * roty(pi/2) * rotz(-pi/2)
T =

0.0000 0.0000 1.0000 0.5000
-1.0000 0.0000 0 0
0.0000 -1.0000 0.0000 0

0 0 0 1.0000

The resulting transformation may be interpreted as a new coordinate frame whose X-, Y- and
Z-axes are parallel to unit vectors given by the first three columns ofT. That is, the new X-axis
is anti-parallel to the world Y-axis, and so on. The orientation of the new coordinate frame may
be expressed in terms of Euler angles

>> tr2eul(T)
ans =

0 1.5708 -1.5708

in units of radians, or roll/pitch/yaw angles

>> rpy = tr2rpy(T)
rpy =

-1.5708 0.0000 -1.5708

Homogeneous transforms can be generated from Euler or roll/pitch/yaw angles, or by rotation
about an arbitrary vector using the functionseul2tr(), rpy2tr(), rotvec() respectively.

Rotation can also be represented by a quaternion[3], which will be denoted here by

q = [s,v] (2)

wheres is a scalar andv ∈ ℜ3. A unit-quaternion has unit magnitude, that is,s2 + |v|2 = 1
in which cases = sinθ/2, andq can be considered as a rotation ofθ about the vectorv. The
rotational component of a homogeneous transform can be converted to a unit-quaternion

>> q = tr2q(T)
q = 0.5000 -0.5000 0.5000 -0.5000

which indicates that the compounded transformation is equivalent to a rotation of 0.5rad about
the vector[−1 1−1]. Quaternions can be compounded (‘multiplied’) by the function qmul().
Quaternions offer several advantages over homogeneous transformations such as reduced arith-
metic cost when compounding rotations, simpler rotationalinterpolation, and less need for nor-
malization to counter the effects of numerical roundoff. Torepresent translation as well as
rotation a quaternion/vector pair can be employed[3] but such a composite type is not yet sup-
ported by this Toolbox.

3 Kinematics

Forward kinematics is the problem of solving the Cartesian position and orientation of the
end-effector given knowledge of the kinematic structure and the joint coordinates. The kine-
matic structure of a serial-link manipulator can be succinctly described in terms of Denavit-
Hartenberg parameters[2]. Within the Toolbox the manipulator’s kinematics are represented
in a general way by adh matrix which is given as the first argument to Toolbox kinematic
functions. Thedh matrix describes the kinematics of a manipulator using the standard Denavit-
Hartenberg conventions, where each row represents one linkof the manipulator and the columns
are assigned according to the following table:

Column Symbol Description
1 αi link twist angle (rad)
2 Ai link offset distance
3 θi link rotation angle (rad)
4 Di link length
5 σi optional joint type; 0 for revolute, non-zero for prismatic

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
0

0.5

1

1.5

XY

Z

Figure 1: Visualization of Puma robot at zero joint angle pose — created byplotbot(p560,
qz).

If the last column is not given, Toolbox functions assume that the manipulator is all-revolute.
For an n-axis manipulatordh is ann×4 or n×5 matrix. Joint angles are represented byn-
element row vectors.

Consider the example of a Puma 560 manipulator, a common laboratory robot. The kine-
matics may be defined by thepuma560 command which creates a kinematic description matrix
p560 in the workspace using standard Denavit-Hartenberg conventions, and the particular frame
assignments of Paul and Zhang[4]. It also creates workspacevariables that define special joint
angle poses:qz for all zero joint angles,qr for the ‘READY’ position andqstretch for a fully
extended arm horizontal pose. The forward kinematics may becomputed for the zero angle
pose

>> puma560 % define puma kinematic matrix p560
>> fkine(p560, qz)
ans =

1.0000 0 0 0.4521
0 1.0000 0 -0.1254
0 0 1.0000 0.4318
0 0 0 1.0000

which returns the homogeneous transform corresponding to the last link of the manipulator.
The translation, given by the last column, is in the same dimensional units as theAi andDi data
in thedh matrix, in this case metres. This pose can be visualized by

>> plotbot(p560, qz);

which produces the 3-D plot shown in Figure 1. The drawn line segments do not necessarily
correspond to robot links, but join the origins of sequential link coordinate frames. This simple
approach eliminates the need for detailed robot geometry data. A small right-handed coordinate
frame is drawn on the end of the robot to show the wrist orientation. The X-, Y- and Z-axes are
represented by the colors red, green and blue respectively.

Inverse kinematics is the problem of finding the robot joint coordinates, given a homoge-
neous transform representing the pose of the end-effector.It is very useful when the path is
planned in Cartesian space, for instance a straight line path as shown later. First generate the
transform corresponding to a particular joint coordinate,

>> q = [0 -pi/4 -pi/4 0 pi/8 0]
q =

0 -0.7854 -0.7854 0 0.3927 0
>> T = fkine(p560, q);

and then find the corresponding joint angles usingikine()

>> qi = ikine(p560, T)
qi =

0.0000 -0.7854 -0.7854 0.0000 0.3927 0.0000

which compares well with the original value.
The inverse kinematic procedure for any specific robot can bederived symbolically[2] and

commonly an efficient closed-form solution can be obtained.However the Toolbox is given only
a generalized description of the manipulator in terms of kinematic parameters so an iterative
numerical solution must be used. Such a procedure can be slow, and the choice of starting value
affects both the search time and the solution found, since ingeneral a manipulator may have
several poses which result in the same transform for the lastlink. The starting point for the
solution may be specified, or else it defaults to zero (which is not a particularly good choice
in this case), and provides limited control over the particular solution that will be found. Note
that a solution is not possible if the specified transform describes a point out of reach of the
manipulator — in such a case the function will return with an error.

The manipulator’s Jacobian matrix,Jq, maps differential motion or velocity between con-
figuration and Cartesian space. For ann-axis manipulator the end-effector Cartesian velocity
is

0ẋn = 0Jq(q) q̇ (3)
Tn ẋn = TnJq(q) q̇ (4)

in base or end-effector coordinates respectively and whereẋ is the Cartesian velocity represented
by a 6-vector as above. The two Jacobians are computed by the Toolbox functionsjacob0()
andjacobn() respectively. For an n-axis manipulator the Jacobian is a 6×n matrix.

>> q = [0.1 0.75 -2.25 0 .75 0];
>> J = jacob0(p560, q)
J =

0.0501 -0.3031 -0.0102 0 0 0
0.7569 -0.0304 -0.0010 0 0 0
0.0000 0.7481 0.4322 0 0 0
0.0000 0.0998 0.0998 0.9925 0.0998 0.6782
0.0000 -0.9950 -0.9950 0.0996 -0.9950 0.0681
1.0000 0.0000 0.0000 0.0707 0.0000 0.7317

or in the end-effector coordinate frame

>> J = jacobn(p560, q)
J =

0.0918 -0.7328 -0.3021 0 0 0
0.7481 0.0000 0.0000 0 0 0
0.0855 0.3397 0.3092 0 0 0

-0.6816 0 0 0.6816 0 0
-0.0000 -1.0000 -1.0000 -0.0000 -1.0000 0
0.7317 0.0000 0.0000 0.7317 0.0000 1.0000

Note the top right 3×3 block is all zero. This indicates, correctly, that motion of joints 4 to
6 does not cause any translational motion of the robot’s end-effector — a characteristic of the
spherical wrist.

Many control schemes require the inverse of the Jacobian, which in this example is not
singular

>> det(J)
ans =

-0.0632

and may be inverted. One such control scheme is resolved ratemotion control proposed by
Whitney[5]

q̇ = 0J−1
q

0ẋn (5)

which gives the joint velocities required to to achieve the desired Cartesian velocity. In this
example, in order to achieve 0.1m/s translational motion in the end-effector X-direction the
required joint velocities would be

>> vel = [0.1 0 0 0 0 0]’; % xlational motion in X directn
>> qvel = inv(J) * vel;
>> qvel’
ans =

0.0000 -0.2495 0.2741 0.0000 -0.0246 0.0000

which requires approximately equal and opposite motion of the shoulder and elbow joints.
At a kinematic singularity the Jacobian becomes singular, and such simple control tech-

niques will fail. As already discussed, at the Puma’s ‘READY’ position two of the wrist joints
are aligned resulting in the loss of one degree of freedom. This is revealed by the rank of the
Jacobian

>> rank(jacobn(p560, qr))
ans =

5

which is less than that needed for independent motion along each Cartesian degree of freedom.
The null space of this Jacobian is

>> n = null(J);
>> n’
ans = 0.0000 0.0000 0.0000 -0.7071 0.0000 0.7071

which indicates that equal and opposite motion of joints 4 and 6 will result in zero motion of
the end-effector.

When not actually at a singularity the condition of the Jacobian can provide information
about how ‘well-positioned’ the manipulator is for making certain motions, and is referred to
as ‘manipulability’. A number of scalar manipulability measures have been proposed. One by
Yoshikawa

>> maniplty(p560(:,1:5), q)
ans = 0.0632

is based purely on kinematic parameters of the manipulator and would indicate, in this case,
that the pose is not well conditioned.

4 Trajectories

As we have seen, homogeneous transforms or unit-quaternions can be used to represent the
pose, position and orientation, of a coordinate frame in Cartesian space. In robotics we fre-
quently need to deal with paths or trajectories, that is, a sequence of Cartesian frames or joint
angles. Consider the example of a path which will move the Puma robot from its zero angle
pose to the upright (or READY) pose. First create a time vector, completing the motion in 2
seconds with a sample interval of 56ms.

>> t = [0:.056:2]’;

and then compute a joint space trajectory

>> q = jtraj(qz, qr, t);

q is a matrix with one row per time step, and each row a joint angle vector as above. The
trajectory is a fifth order polynomial which has continuous acceleration and jerk. By default the
initial and final velocities are zero, but these may be specified by additional arguments. For this
particular trajectory most of the motion is done by joints 2 and 3, and this can be conveniently
plotted using standard MATLAB plotting commands

>> subplot(2,1,1); plot(t,q(:,2))
>> subplot(2,1,2); plot(t,q(:,3))

to give Figure 2. We can also look at the velocity and acceleration profiles. We could differen-
tiate the angle trajectory usingdiff, but more accurate results can be obtained by requesting
thatjtraj return angular velocity and acceleration as follows

>> [q,qd,qdd] = jtraj(qz, qr, t);

which can then be plotted as before to give Figure 2.
A number of Toolbox functions can operate on trajectories, for instance forward kinematics.

The homogeneous transform for each point of the trajectory is given by

>> Ttg = fkine(p560, q);

Since MATLAB does not yet support 3-dimensional matrices, each row ofTtg is a ‘flattened’
4x4 homogeneous transform corresponding to the equivalentrow of q, which can be restored
by means of thereshape function. Columns 13, 14 and 15 ofT correspond to the X-, Y- and
Z- coordinates respectively, and could be plotted against time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

Time (s)

Jo
in

t 2
 (

ra
d)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-2

-1.5

-1

-0.5

0

Time (s)

Jo
in

t 3
 (

ra
d)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-10

-5

0

5

10

Time (s)

Jo
in

t 2
 a

cc
el

 (
ra

d/
s2

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-10

-5

0

5

10

Time (s)

Jo
in

t 3
 a

cc
el

 (
ra

d/
s2

)

Figure 2: Joint space trajectory generated byjtraj(). Left: joint 2 and 3 angles; right: joint 2
and 3 acceleration.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

Time (s)

X
 (

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.2

0

Time (s)

Y
 (

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.6

0.8

Time (s)

Z
 (

m
)

Figure 3: Cartesian coordinates of wrist for the trajectoryof Figure 2.

>> subplot(3,1,1); plot(t, Ttg(:,13))
>> subplot(3,1,2); plot(t, Ttg(:,14))
>> subplot(3,1,3); plot(t, Ttg(:,15))

to give Figure 3, or we could plot X against Z to get some idea ofthe Cartesian path followed
by the manipulator

>> subplot(1,1,1); plot(Ttg(:,13), Ttg(:,15))

The functionplotbot introduced above, will when invoked on a trajectory, display a stick
figure animation of the robot moving along the path

>> plotbot(p560, q);

Straight line, or ‘Cartesian’, paths can be generated in a similar way between two points
specified by homogeneous transforms.

>> t = [0:.056:2]; % create a time vector

>> T0 = transl(0.6, -0.5, 0.0); % define the start point
>> T1 = transl(0.4, 0.5, 0.2); % and destination
>> Ts = ctraj(T0, T1, t); % compute a Cartesian path

The resulting trajectory,Ts, has one row per time step and that row is again a ‘flattened’ homo-
geneous transform. Inverse kinematics can then be applied to determine the corresponding joint
angle motion using

>> qc = ikine(p560, T);

When solving for a trajectory, the starting joint coordinates for each inverse kinematic solution
is taken as the result of the previous solution. Once again the joint space trajectory could be
plotted against time or animated usingplotbot. Clearly this approach is slow, and would not
be suitable be for a real robot controller where an inverse kinematic solution would be required
in a few milliseconds.

5 Dynamics

Manipulator dynamics is concerned with the equations of motion, the way in which the manip-
ulator moves in response to torques applied by the actuators, or external forces. The history
and mathematics of the dynamics of serial-link manipulators is well covered by Paul[2] and
Hollerbach[6]. The equations of motion for ann-axis manipulator are given by

Q = M(q)q̈+C(q, q̇)q̇+F(q̇)+G(q) (6)

where
q is the vector of generalized joint coordinates describing the pose of the

manipulator
q̇ is the vector of joint velocities;
q̈ is the vector of joint accelerations

M is the symmetric joint-space inertia matrix, or manipulator inertia tensor
C describes Coriolis and centripetal effects — centripetal torques are propor-

tional toq̇2
i , while the Coriolis torques are proportional to ˙qiq̇ j

F describes viscous and Coulomb friction and is not generallyconsidered part
of the rigid-body dynamics

G is the gravity loading
Q is the vector of generalized forces associated with the generalized coordi-

natesq.
Within the Toolbox the manipulator’s kinematics and dynamics are represented in a general

way by adyn matrix which is given as the first argument to Toolbox dynamicfunctions. Each
row represents one link of the manipulator and the columns are assigned according to Table
1. Thedyn matrix is in fact adh matrix augmented with additional columns for the inertial
and mass parameters of each link, as well as the motor inertiaand friction parameters. Such
a definition allows adyn matrix to be passed to any Toolbox function in place of adh matrix
but not vice versa. For an n-axis manipulatordyn is ann×20 matrix. This structure does not
allow for joint cross-coupling, as found in the Puma robot’swrist, joint angle limits, or motor
electrical parameters such as torque constant and driver current or voltage limits.

Inverse dynamics computes the joint torques required to achieve the specified state of joint
position, velocity and acceleration. The recursive Newton-Euler formulation is an efficient ma-
trix oriented algorithm for computing the inverse dynamics, and is implemented by the Toolbox

Column Symbol Description
6 m mass of the link
7 rx link COG with respect to the link coordinate frame
8 ry

9 rz

10 Ixx elements of link inertia tensor about the link COG
11 Iyy

12 Izz

13 Ixy

14 Iyz

15 Ixz

16 Jm armature inertia
17 G reduction gear ratio; joint speed/link speed
18 B viscous friction, motor referred
19 τ+

c coulomb friction (positive rotation), motor referred
20 τ−c coulomb friction (negative rotation), motor referred

Table 1: Augmented column assigments for the Toolboxdyn matrix.

functionrne(). Using the joint space trajectory from the trajectory example above, Figure 2,
the required joint torques can be computed for each point of the trajectory by

>> tau = rne(q, qd, qdd);

As with all Toolbox functions the result has one row per time step, and each row is a joint
torque vector. Joint torque for the base axes is plotted as a function of time in Figure 4. Much
of the torque on joints 2 and 3 of a Puma 560 (mounted conventionally) is due to gravity. That
component can be computed separately

>> tau_g = gravload(p560, q);
>> plot(t, taug(:,1:3))

and is plotted as the dashed lines in Figure 4. The torque component due to velocity terms,
Coriolis and centripetal torques, can be computed separately by thecoriolis() function.

Forward dynamics is the computation of joint accelerationsgiven position and velocity state,
and applied actuator torques and is particularly useful in simulation of a robot control system.
The Toolbox uses Method 1 of Walker and Orin[7] which uses repeated calls to the inverse
dynamics functionrne(). Consider a Puma 560 at rest in the zero angle pose, with zero applied
joint torques. The joint acceleration would be given by

>> a=accel(p560, qz, zeros(1,6), zeros(1,6))
>> a’
a = -0.2463 -8.7020 2.5442 0.0021 0.0672 0.0001

To be useful for simulation this function must be integrated, and this is achieved by the Toolbox
function fdyn() which uses the MATLAB functionode45. It also allows for a user written
function to return the applied joint torque as a function of manipulator state and this can be
used to model arbitrary axis control strategies — if not specified zero torques are applied. To
simulate the motion of the Puma 560 from rest in the zero anglepose with zero applied joint
torques

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

2

4

Time (s)

T
or

qu
e

1
(N

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-20
0

20
40
60

Time (s)

T
or

qu
e

2
(N

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-2

0

2

Time (s)

T
or

qu
e

3
(N

m
)

Figure 4: Joint torques for the joint space trajectory example of Figure 2.

0 0.5 1 1.5 2
-8
-6
-4
-2
0

Time (s)

Jo
in

t 3
 (

ra
d)

0 0.5 1 1.5 2
-4

-2

0

Time (s)

Jo
in

t 2
 (

ra
d)

0 0.5 1 1.5 2
0

0.2

0.4

Time (s)

Jo
in

t 1
 (

ra
d)

Figure 5: Simulated joint angle trajectory of Puma robot with zero applied joint torque collaps-
ing under gravity.

>> tic
>> [t q qd] = fdyn(p560, 0, 2);
elapsed_time =

1.6968e+003 % on a 33MHz 486 PC

The resulting motion is plotted versus time in Figure 5. which clearly shown that the robot is
collapsing under gravity. An animation usingplotbot() clearly depicts this. It is interesting to
note that rotational velocity of the upper and lower arm result in centripetal and Coriolis torques
on the waist joint, causing it to rotate. This simulation takes nearly half an hour to execute on
a reasonable PC and is due to the very large number of calls to therne() function (ideally the
rne() function should be implemented by a computationally more efficient MEX file).

6 Conclusion

This short paper has demonstrated, in tutorial form, the principle features of the Robotics Tool-
box for MATLAB. The Toolbox provides many of the essential tools necessary for robotic
modelling and simulation, as well as analyzing experimental results or teaching. A key fea-
ture is the use of a single matrix to completely describe the kinematics and dynamics of any
serial-link manipulator.

The Robotics Toolbox is freely available fromftp.mathworks.com, the MathWorks FTP
server, in the directorypub/contrib/misc/robot. It is best to download all files in that di-
rectory since the Toolbox functions are quite interdependent. A comprehensive manual, in
PostScript format, provides details of each Toolbox function. A menu-driven demonstration
can be invoked by the functionrtdemo.

References

[1] The MathWorks, Inc., 24 Prime Park Way, Natick, MA 01760,Matlab User’s Guide, Jan.
1990.

[2] R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control. Cambridge,
Massachusetts: MIT Press, 1981.

[3] J. Funda, R. Taylor, and R. Paul, “On homogeneous transforms, quaternions, and computa-
tional efficiency,”IEEE Trans. Robot. Autom., vol. 6, pp. 382–388, June 1990.

[4] R. P. Paul and H. Zhang, “Computationally efficient kinematics for manipulators with
spherical wrists,”Int. J. Robot. Res., vol. 5, no. 2, pp. 32–44, 1986.

[5] D. Whitney and D. M. Gorinevskii, “The mathematics of coordinated control of prosthetic
arms and manipulators,”ASME Journal of Dynamic Systems, Measurement and Control,
vol. 20, no. 4, pp. 303–309, 1972.

[6] J. M. Hollerbach, “Dynamics,” inRobot Motion - Planning and Control (M. Brady, J. M.
Hollerbach, T. L. Johnson, T. Lozano-Perez, and M. T. Mason,eds.), pp. 51–71, MIT, 1982.

[7] M. W. Walker and D. E. Orin, “Efficient dynamic computer simulation of robotic mecha-
nisms,”ASME Journal of Dynamic Systems, Measurement and Control, vol. 104, pp. 205–
211, 1982.

