A computer tool for simulation and analysis:
the Robotics Toolbox for MATLAB

Peter |. Corke
CSIRO Division of Manufacturing Technology
pic@mlb.dmt.csiro.au

Abstract. This paper introduces, in tutorial form, a Robotics ToolbmXVIATLAB that allows
the user to easily create and manipulate datatypes fundahb@robotics such as homogeneous
transformations, quaternions and trajectories. Funstpovided for arbitrary serial-link ma-
nipulators include forward and inverse kinematics, anadvéod and inverse dynamics. The
complete Toolbox and documentation is freely availableavianymous ftp.

1 Introduction

MATLABI[1] is a powerful environment for linear algebra andaghical presentation that is
available on a very wide range of computer platforms. The @amctionality can be extended by
application specific toolboxes. The Robotics Toolbox pdegimany functions that are required
in robotics and addresses areas such as kinematics, dysanit trajectory generation. The
Toolbox is useful for simulation as well as analyzing resédbm experiments with real robots,
and can be a powerful tool for education.

The Toolbox is based on a very general method of represethtrigjnematics and dynamics
of serial-link manipulators by description matrices. Tdnesmprise, in the simplest case, the
Denavit and Hartenberg parameters[2] of the robot and candaged by the user for any serial-
link manipulator. A number of examples are provided for vi@ibwn robots such as the Puma
560 and the Stanford arm. The manipulator description cagldi#orated, by augmenting the
matrix, to include link inertial, and motor inertial anddtional parameters. Such matrices
provide a concise means of describing a robot model and nwaljtdte the sharing of robot
models across the research community. This would allow Isition results to be compared
in a much more meaningful way than is currently done in therditure. The Toolbox also
provides functions for manipulating datatypes such asovechomogeneous transformations
and unit-quaternions which are necessary to represenh8rdiional position and orientation.
The routines are generally written in a straightforwardfextbook, manner for pedagogical
reasons rather than for maximum computational efficiency.

This paper is written in a tutorial form and does not requieéaded knowledge of MAT-
LAB. The examples illustrate both the principal featureshaf Toolbox and some elementary
robotic theory. Section 2 begins by introducing the funtéi@nd datatypes used to represent
3-dimensional (3D) position and orientation. Section 3ddtices the general matrix repre-
sentation of an arbitrary serial-link manipulator and esvkinematics; forward and inverse
solutions and the manipulator Jacobians. Section 4 is enadeawith the creation of trajecto-
ries in configuration or Cartesian space. Section 5 extdralgeéneral matrix representation to

include manipulator rigid-body and motor dynamics, andcdbss functions for forward and
inverse manipulator dynamics. Details on how to obtain @iekpge are given in Section 6.

2 Representing 3D trandation and orientation

In Cartesian coordinates translation may be representedpmgition vector:p, with respect
to the origin of coordinate frama and wherep € 03. If A is not given the world coordinate
frame is assumed. Many representations of 3D orientative baen proposed[3] but the most
commonly used in robotics are orthonormal rotation masrexed unit-quaternions. The homo-
geneous transformation is ax44 matrix which represents translation and orientation ard c
be compounded simply by matrix multiplication. Such a mxatepresentation is well matched
to MATLAB’s powerful capability for matrix manipulation. éilnogeneous transformations

_| R p
T_[ooo _1] @)

describe the relationships between Cartesian coordinateet in terms of a Cartesian trans-
lation, p, and orientation. expressed as an orthonormal rotatiomxm& is a 3x 3. A ho-
mogeneous transformation representing a pure translatiob m in the X-direction is created

by
>> T = transl (0.5, 0.0, 0.0)

T =
1. 0000 0 0 0. 5000
0 1. 0000 0 0
0 0 1. 0000 0
0 0 0 1. 0000

and a rotation of 90about the Y-axis by

>> T = roty(pi/?2)

T =
0. 0000 0 1. 0000 0
0 1. 0000 0 0
-1. 0000 0 0. 0000 0
0 0 0 1. 0000

Such transforms may be concatenated by multiplicationnfstance,

>> T =transl (0.5, 0.0, 0.0) * roty(pi/2) * rotz(-pi/2)

T =
0. 0000 0. 0000 1. 0000 0. 5000
-1.0000 0. 0000 0 0
0.0000 -1.0000 0. 0000 0
0 0 0 1. 0000

The resulting transformation may be interpreted as a newdaoate frame whose X-, Y- and
Z-axes are parallel to unit vectors given by the first thrdaroos ofT. That is, the new X-axis
is anti-parallel to the world Y-axis, and so on. The orieiotabf the new coordinate frame may
be expressed in terms of Euler angles

>> tr2eul (T)
ans =
0 1.5708 -1.5708

in units of radians, or roll/pitch/yaw angles

>> rpy = tr2rpy(T)

rpy =
-1.5708 0.0000 -1.5708

Homogeneous transforms can be generated from Euler gpitoli/yaw angles, or by rotation
about an arbitrary vector using the functiang 2t r (), rpy2tr(),rotvec() respectively.
Rotation can also be represented by a quaternion[3], whiitbhevdenoted here by

q=1sV 2)

wheres is a scalar and € 0%. A unit-quaternion has unit magnitude, that $8+ |v|2 = 1
in which cases = sinB/2, andq can be considered as a rotation@o&bout the vectoy. The
rotational component of a homogeneous transform can beedmato a unit-quaternion

>> q = tr2q(T)
g = 0.5000 -0.5000 0.5000 -0.5000

which indicates that the compounded transformation isvedgemt to a rotation of G rad about
the vectorj—1 1 —1|. Quaternions can be compounded (‘multiplied’) by the fiorcgmul () .
Quaternions offer several advantages over homogenemssdranations such as reduced arith-
metic cost when compounding rotations, simpler rotatiamakpolation, and less need for nor-
malization to counter the effects of numerical roundoff. répresent translation as well as
rotation a quaternion/vector pair can be employed[3] buhsaicomposite type is not yet sup-
ported by this Toolbox.

3 Kinematics

Forward kinematics is the problem of solving the Cartesiasitppn and orientation of the
end-effector given knowledge of the kinematic structurd #re joint coordinates. The kine-
matic structure of a serial-link manipulator can be sudtyndescribed in terms of Denavit-
Hartenberg parameters[2]. Within the Toolbox the manifuia kinematics are represented
in a general way by d@h matrix which is given as the first argument to Toolbox kineémat
functions. Thalh matrix describes the kinematics of a manipulator using téwedard Denavit-
Hartenberg conventions, where each row represents oneflthke manipulator and the columns
are assigned according to the following table:

Column Symbol Description
1 (of link twist angle (rad)
2 A link offset distance
3 6 link rotation angle (rad)
4 D; link length
5 (o optional joint type; O for revolute, non-zero for prismatic

1.5+

Figure 1: Visualization of Puma robot at zero joint anglegoes created byl ot bot (p560,
9z) .

If the last column is not given, Toolbox functions assume ti@ manipulator is all-revolute.
For an n-axis manipulatath is ann x 4 or n x 5 matrix. Joint angles are representedrby
element row vectors.

Consider the example of a Puma 560 manipulator, a commomdtdsg robot. The kine-
matics may be defined by tipegma560 command which creates a kinematic description matrix
p560 in the workspace using standard Denavit-Hartenberg cdioren and the particular frame
assignments of Paul and Zhang[4]. It also creates worksgatables that define special joint
angle posexyz for all zero joint anglesgr for the ‘READY’ position andyst r et ch for a fully
extended arm horizontal pose. The forward kinematics magobeputed for the zero angle
pose

>> pumab60 % define puma kinematic matrix p560
>> fkine(p560, qz)
ans =
1. 0000 0 0 0. 4521
0 1. 0000 0 -0.1254
0 0 1. 0000 0.4318
0 0 0 1. 0000

which returns the homogeneous transform correspondingetdaist link of the manipulator.
The translation, given by the last column, is in the same dsimal units as thd; andD; data
in thedh matrix, in this case metres. This pose can be visualized by

>> pl ot bot (p560, qz);

which produces the 3-D plot shown in Figure 1. The drawn legnsents do not necessarily
correspond to robot links, but join the origins of sequétitikk coordinate frames. This simple

approach eliminates the need for detailed robot geometey dasmall right-handed coordinate
frame is drawn on the end of the robot to show the wrist orieata The X-, Y- and Z-axes are

represented by the colors red, green and blue respectively.

Inverse kinematics is the problem of finding the robot joinblinates, given a homoge-
neous transform representing the pose of the end-effelttes.very useful when the path is
planned in Cartesian space, for instance a straight line ggshown later. First generate the
transform corresponding to a particular joint coordinate,

>>q =[0-pi/4-pi/4 0 pi/8 Q]
q =

0 -0.7854 -0.7854 0 0. 3927 0
>> T = fkine(p560, q);

and then find the corresponding joint angles usikigne()

>> (i = ikine(p560, T)

q =
0.0000 -0.7854 -0.7854 0. 0000 0. 3927 0. 0000

which compares well with the original value.

The inverse kinematic procedure for any specific robot caddsed symbolically[2] and
commonly an efficient closed-form solution can be obtaiémlvever the Toolbox is given only
a generalized description of the manipulator in terms oéRiatic parameters so an iterative
numerical solution must be used. Such a procedure can beastovthe choice of starting value
affects both the search time and the solution found, singgeireral a manipulator may have
several poses which result in the same transform for thditdst The starting point for the
solution may be specified, or else it defaults to zero (whgchat a particularly good choice
in this case), and provides limited control over the palticsolution that will be found. Note
that a solution is not possible if the specified transformcdbes a point out of reach of the
manipulator — in such a case the function will return with amme

The manipulator's Jacobian matri¥y, maps differential motion or velocity between con-
figuration and Cartesian space. Forraaxis manipulator the end-effector Cartesian velocity
is

% = %4(0)q (3)
%, = ™Jq(9)g (4)

in base or end-effector coordinates respectively and whisrine Cartesian velocity represented
by a 6-vector as above. The two Jacobians are computed bytiibok functiong acob0()
andj acobn() respectively. For an n-axis manipulator the Jacobian i a @atrix.

>>q=[0.10.75-2.250 .75 0];

>> J = jacob0(p560, q)

J =
0.0501 -0.3031 -0.0102 0 0 0
0.7569 -0.0304 -0.0010 0 0 0
0. 0000 0.7481 . 4322 0 0 0

0. 0000 0. 0998
0.0000 -0.9950 -
1. 0000 0. 0000

. 0998 0.9925 0. 0998 0.6782
. 9950 0.0996 -0.9950 0. 0681
. 0000 0. 0707 0. 0000 0. 7317

O OO O oo

or in the end-effector coordinate frame

>> J = jacobn(p560, q)

J =
0.0918 -0.7328 -0.3021 0 0 0
0. 7481 0. 0000 0. 0000 0 0 0
0. 0855 0. 3397 0. 3092 0 0 0
-0. 6816 0 0 0. 6816 0 0
-0.0000 -1.0000 -1.0000 -0.0000 -1.0000 0
0. 7317 0. 0000 0. 0000 0. 7317 0. 0000 1. 0000

Note the top right 3« 3 block is all zero. This indicates, correctly, that motidrjants 4 to
6 does not cause any translational motion of the robot’sedfe:tor — a characteristic of the
spherical wrist.

Many control schemes require the inverse of the Jacobiaichwh this example is not
singular

>> det (J)
ans =
-0.0632

and may be inverted. One such control scheme is resolvedmatien control proposed by
Whitney[5]
g _ O‘Jal O)_-(n (5)

which gives the joint velocities required to to achieve tlesiced Cartesian velocity. In this
example, in order to achievelim/s translational motion in the end-effector X-direction the
required joint velocities would be

>>vel =[0.100000]"; %xlational notion in X directn
>> qvel = inv(J) * vel;

>> qvel’

ans =

0.0000 -0.2495 0.2741 0.0000 -0.0246 0. 0000

which requires approximately equal and opposite motiomefshoulder and elbow joints.

At a kinematic singularity the Jacobian becomes singulad, such simple control tech-
niques will fail. As already discussed, at the Puma’s ‘REAPW¥sition two of the wrist joints
are aligned resulting in the loss of one degree of freedonis iSlrevealed by the rank of the
Jacobian

>> rank(jacobn(p560, qr))
ans =
5

which is less than that needed for independent motion alanly €artesian degree of freedom.
The null space of this Jacobian is

>>n = null(J);
>> n'
ans = 0. 0000 0. 0000 0.0000 -0.7071 0. 0000 0.7071

which indicates that equal and opposite motion of joints d @nwill result in zero motion of
the end-effector.

When not actually at a singularity the condition of the Jaaolcan provide information
about how ‘well-positioned’ the manipulator is for makingrain motions, and is referred to
as ‘manipulability’. A number of scalar manipulability neaes have been proposed. One by
Yoshikawa

>> mani pl ty(p560(:, 1:5), Q)
ans = 0. 0632

is based purely on kinematic parameters of the manipulatdreould indicate, in this case,
that the pose is not well conditioned.

4 Trajectories

As we have seen, homogeneous transforms or unit-quatsrcem be used to represent the
pose, position and orientation, of a coordinate frame irnté3&n space. In robotics we fre-
guently need to deal with paths or trajectories, that is,cusece of Cartesian frames or joint
angles. Consider the example of a path which will move the @twbot from its zero angle
pose to the upright (or READY) pose. First create a time wectmmpleting the motion in 2
seconds with a sample interval of 56 ms.

>>t = [0:.056:2]";
and then compute a joint space trajectory
>>q = jtraj(qz, qr, t);

q is a matrix with one row per time step, and each row a joint @mnvglctor as above. The
trajectory is a fifth order polynomial which has continuouaseleration and jerk. By default the
initial and final velocities are zero, but these may be sptifiy additional arguments. For this
particular trajectory most of the motion is done by jointsn2l 8, and this can be conveniently
plotted using standard MATLAB plotting commands

>> subplot(2,1,1); plot(t,q(:,2))
>> subplot(2,1,2); plot(t,q(:,3))

to give Figure 2. We can also look at the velocity and accgtargrofiles. We could differen-
tiate the angle trajectory usingj f f , but more accurate results can be obtained by requesting
thatj t raj return angular velocity and acceleration as follows

>>[0q,qd,qdd] =jtraj(qz, gr, t);

which can then be plotted as before to give Figure 2.
A number of Toolbox functions can operate on trajectoriesirfstance forward kinematics.
The homogeneous transform for each point of the trajecsogjvien by

>> Ttg = fkine(p560, q);

Since MATLAB does not yet support 3-dimensional matricesherow ofTt g is a ‘flattened’
4x4 homogeneous transform corresponding to the equived@ndf g, which can be restored
by means of the eshape function. Columns 13, 14 and 15 ®fcorrespond to the X-, Y- and
Z- coordinates respectively, and could be plotted agaiimst t

N

=
il
T

o
)
T

Joint 2 (rad)
-
Joint 2 accel (rad/s2)

o

0.2 0.4 0.6 0.8 1 12 14 16 18 0 0.2 0.4 0.6 0.8 1 12 14 16 18
Time (s) Time (s)

T~

“0 0.2 0.4 0.6 0.8 1 1.2 14 16 18 o) 0.2 0.4 0.6 0.8 1 1.2 14 16 18
Time (s) Time (s)

o

=3

Joint 3 (rad)
. <)
[3]

|
2]
T

Joint 3 accel (rad/s2)

Figure 2: Joint space trajectory generated biaj () . Left: joint 2 and 3 angles; right: joint 2

and 3 acceleration.
I — ‘ ‘ ‘ ‘ ‘ ‘ ‘
E
=< 0.2F

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18

Time (s)
0
€
>
-0.2F
0 02 04 06 08 1 12 14 16 1.8
Time (s)

Time (s)

Figure 3: Cartesian coordinates of wrist for the trajectfrifzigure 2.

>> subplot(3,1,1); plot(t, Ttg(:,13))
>> subplot(3,1,2); plot(t, Ttg(:,14))
>> subplot(3,1,3); plot(t, Ttg(:,15))

to give Figure 3, or we could plot X against Z to get some idethefCartesian path followed
by the manipulator

>> subplot(1,1,1); plot(Ttg(:,13), Ttg(:,15))

The functionpl ot bot introduced above, will when invoked on a trajectory, digpdastick
figure animation of the robot moving along the path

>> pl ot bot (p560, q);

Straight line, or ‘Cartesian’, paths can be generated inmalasi way between two points
specified by homogeneous transforms.

>> t = [0:.056:2]; %create a tine vector

>> T0 = transl (0.6, -0.5, 0.0); % define the start point
>> T1 = transl (0.4, 0.5, 0.2); % and destination
>> Ts = ctraj(T0, T1, t); % conpute a Cartesian path

The resulting trajectoryl's, has one row per time step and that row is again a ‘flattenet’dio
geneous transform. Inverse kinematics can then be appl@etérmine the corresponding joint
angle motion using

>> qc = ikine(p560, T);

When solving for a trajectory, the starting joint coordegfor each inverse kinematic solution
is taken as the result of the previous solution. Once againdimt space trajectory could be
plotted against time or animated usipigot bot . Clearly this approach is slow, and would not
be suitable be for a real robot controller where an inverserkiatic solution would be required
in a few milliseconds.

5 Dynamics

Manipulator dynamics is concerned with the equations ofionothe way in which the manip-
ulator moves in response to torques applied by the actyaioexternal forces. The history
and mathematics of the dynamics of serial-link manipukatsrwell covered by Paul[2] and
Hollerbach[6]. The equations of motion for araxis manipulator are given by

Q=M(q)g+C(q,9)9+F(a) +G(a) (6)
where

g is the vector of generalized joint coordinates describimg pose of the

~ manipulator

g isthe vector of joint velocities;

g is the vector of joint accelerations
M is the symmetric joint-space inertia matrix, or manipulatertia tensor

C describes Coriolis and centripetal effects — centripetajues are propor-

tional toq’iz, while the Coriolis torques are proportionald@;

describes viscous and Coulomb friction and is not genecalhsidered part
of the rigid-body dynamics

is the gravity loading

is the vector of generalized forces associated with thergéned coordi-
natesq.

Within the Toolbox the manipulator’s kinematics and dynesrare represented in a general
way by adyn matrix which is given as the first argument to Toolbox dynafaitctions. Each
row represents one link of the manipulator and the columasaasigned according to Table
1. Thedyn matrix is in fact adh matrix augmented with additional columns for the inertial
and mass parameters of each link, as well as the motor irartidriction parameters. Such
a definition allows ayn matrix to be passed to any Toolbox function in place ahamatrix
but not vice versa. For an n-axis manipuladgn is ann x 20 matrix. This structure does not
allow for joint cross-coupling, as found in the Puma robatisst, joint angle limits, or motor
electrical parameters such as torque constant and drivesrtwor voltage limits.

Inverse dynamics computes the joint torques required teeaetihe specified state of joint
position, velocity and acceleration. The recursive NewEaiter formulation is an efficient ma-
trix oriented algorithm for computing the inverse dynamansd is implemented by the Toolbox

T

O ©

Column Symbol Description

6 m mass of the link

7 Iy link COG with respect to the link coordinate frame
8 ry

9 ry

10 Iyx elements of link inertia tensor about the link COG
11 lyy

12 |

13 lyy

14 lyz

15 lyz

16 Im armature inertia

17 G reduction gear ratio; joint speed/link speed

18 B viscous friction, motor referred

19 1 coulomb friction (positive rotation), motor referred
20 Tc coulomb friction (negative rotation), motor referred

Table 1: Augmented column assigments for the Tooliyax matrix.

functionrne() . Using the joint space trajectory from the trajectory exengbove, Figure 2,
the required joint torques can be computed for each poiriteotrajectory by

>> tau = rne(q, qd, qdd);

As with all Toolbox functions the result has one row per tinbeps and each row is a joint
torque vector. Joint torque for the base axes is plotted asac@ibn of time in Figure 4. Much
of the torque on joints 2 and 3 of a Puma 560 (mounted conveaityg is due to gravity. That
component can be computed separately

>> tau_g = gravl oad(p560, q);
>> plot(t, taug(:,1:3))

and is plotted as the dashed lines in Figure 4. The torque cpeamt due to velocity terms,
Coriolis and centripetal torques, can be computed sepatatehecori ol i s() function.

Forward dynamics is the computation of joint acceleratgimen position and velocity state,
and applied actuator torques and is particularly usefuinmukation of a robot control system.
The Toolbox uses Method 1 of Walker and Orin[7] which usesaded calls to the inverse
dynamics functiomne() . Consider a Puma 560 at rest in the zero angle pose, with pptied
joint torques. The joint acceleration would be given by

>> a=accel (p560, qz, zeros(1,6), zeros(1,6))
>> 3’
a = -0.2463 -8.7020 2.5442 0.0021 0.0672 0.0001

To be useful for simulation this function must be integratat this is achieved by the Toolbox
functionf dyn() which uses the MATLAB functiorode45. It also allows for a user written
function to return the applied joint torque as a function aimpulator state and this can be
used to model arbitrary axis control strategies — if not gt zero torques are applied. To
simulate the motion of the Puma 560 from rest in the zero apgée with zero applied joint
torques

N B

Torque 1 (Nm)
o

Torque 2 (Nm)
N NAD
[ejelelels]

o
o
N
o
i
o
o
o
]
=
-
N
=
N
=
o
=
o

Torque 3 (Nm)
N =IN)

o
o
N
o
~
o
o
o
o]
=
-
N
=
N
=
o
-
e

Time (s)

Figure 4: Joint torques for the joint space trajectory exampFigure 2.

— T
8 0.4F
20.2r .
c
5]
- O L L Il
0 0.5 1 1.5 2
Time (s)
.0
e}
<
~ -2t
=S
=)
i -4 I I I
0 0.5 1 1.5 2
Time (s)
=0 T
e}
8 -2r
o -4F
=y
£-6
™ gk I] 1 =
0 0.5 1 1.5 2

Time (s)

Figure 5: Simulated joint angle trajectory of Puma robotweiéro applied joint torque collaps-
ing under gravity.

>> tic
>> [t q qd] = fdyn(p560, 0, 2);
el apsed_time =
1. 6968e+003 % on a 33MHz 486 PC

The resulting motion is plotted versus time in Figure 5. vahitearly shown that the robot is
collapsing under gravity. An animation usipgot bot () clearly depicts this. It is interesting to
note that rotational velocity of the upper and lower arm ltgaicentripetal and Coriolis torques
on the waist joint, causing it to rotate. This simulationgskearly half an hour to execute on
a reasonable PC and is due to the very large number of caltetmé() function (ideally the
rne() function should be implemented by a computationally mofieieht MEX file).

6 Conclusion

This short paper has demonstrated, in tutorial form, thecgle features of the Robotics Tool-
box for MATLAB. The Toolbox provides many of the essentiabl® necessary for robotic
modelling and simulation, as well as analyzing experimemgsults or teaching. A key fea-
ture is the use of a single matrix to completely describe therkatics and dynamics of any
serial-link manipulator.

The Robotics Toolbox is freely available froihp. mat hwor ks. com the MathWorks FTP
server, in the directorpub/ contri b/ m sc/robot . It is best to download all files in that di-
rectory since the Toolbox functions are quite interdepahdé comprehensive manual, in
PostScript format, provides details of each Toolbox fuotti A menu-driven demonstration
can be invoked by the functiart deno.

References

[1] The MathWorks, Inc., 24 Prime Park Way, Natick, MA 01760atlab User’s Guide, Jan.
1990.

[2] R. P. Paul,Robot Manipulators. Mathematics, Programming, and Control. Cambridge,
Massachusetts: MIT Press, 1981.

[3] J. Funda, R. Taylor, and R. Paul, “On homogeneous tramsfpquaternions, and computa-
tional efficiency,”|EEE Trans. Robot. Autom., vol. 6, pp. 382—-388, June 1990.

[4] R. P. Paul and H. Zhang, “Computationally efficient kireios for manipulators with
spherical wrists,Int. J. Robot. Res., vol. 5, no. 2, pp. 32—-44, 1986.

[5] D. Whitney and D. M. Gorinevskii, “The mathematics of edimated control of prosthetic
arms and manipulatorsASME Journal of Dynamic Systems, Measurement and Control,
vol. 20, no. 4, pp. 303-309, 1972.

[6] J. M. Hollerbach, “Dynamics,” irRobot Motion - Planning and Control (M. Brady, J. M.
Hollerbach, T. L. Johnson, T. Lozano-Perez, and M. T. Masds,), pp. 51-71, MIT, 1982.

[7] M. W. Walker and D. E. Orin, “Efficient dynamic computensilation of robotic mecha-
nisms,” ASME Journal of Dynamic Systems, Measurement and Control, vol. 104, pp. 205—
211, 1982.

